top of page
  • Eren Özkan

Long Short Term Memory (LSTM) from scratch

Updated: Sep 4

Introduction

Long Short Term Memory (LSTM) is a type of artificial neural network widely used in the field of deep learning.LSTM was built to avoiding vanishing/exploding gradient problem of RNN. However, LSTM networks can still suffer from the exploding gradient problem. Due to special memory capability, LSTM generally use for time series forecasting. In this article, I would like to talk about LSTM architecture and building the architecture with PyTorch.


 

Architecture

First of all, let’s talk about the architecture of LSTM.


In the LSTM, there are two types of memory. One of this long-term memory that shown as a green line on the figure. The red line shows short-term memory. Also, LSTM has input, output and forget gate.


 

Calculation


We assume that the recent long term value is 2, short term value is 1 and input is 1. Also, i wrote the initial weights and biases.

Lets calculate the output.


Forget Gate


(1 x 2.2) + (1 x 2.7) = 4.9

4.9 + 2.3 = 7.2

sigmoid(7.2) = 1


Remember that;

Our forget gate output is 1. We multiply this with 2. Our first long term memory value is 2.


Input Gate


Green cell

(1 x 1.1) + (1 x 0.8) = 1.9

1.9 + 0.8 = 2.7

sigmoid(2.7) = 0.937


Yellow cell

(1 x 0.4) + (1 x 1.2) = 1.6

1.6 + 0.9 = 2.5

tanh(2.5) = 0.987


Remember that;

We multiply those two cell and add to long term memory.

2 + 0.987 = 2.987


Output Gate


Gray cell

(1 x 0.3) + (1 x 2.9) = 3.2

3.2 + 2.1 = 5.3

sigmoid(5.3) = 0.995


Pink cell

tanh(2.987) = 0.995

We multiply this value with green cell output.

0.995 x 0.995 = 0.9899


Finally, our new short memory value is 0.9899. This calculation continues with new input values. And then, again and again.


This is the forward propagation. When the algorithm calculates the last output, backpropagation does its job. The mission of the backpropagation is to decrease the loss.


 

Building with hands


Libraries

First of all, we have to import necessary libraries. Lightning helps us to create architecture.

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
import lightning as L

Weight and biases

Now, we have to place weights and biases. Before that, i define a class that contains the lighting module.

class SimpleLSTM(L.LightningModule):
    def __init__(self):

        super().__init__()

        mean = torch.tensor(0.0)
        std = torch.tensor(1.0)

        # Blue cell weights and biases
        self.wbc1 =   	nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.wbc2 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.bbc1 = nn.Parameter(torch.tensor(0.),requires_grad=True)

        # Green cell weights and biases
        self.wgc1 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.wgc2 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.bgc1 = nn.Parameter(torch.tensor(0.),requires_grad=True)

        # Yellow cell weights and biases
        self.wyc1 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.wyc2 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.byc1 = nn.Parameter(torch.tensor(0.),requires_grad=True)

        # Gray cell weights and biases
        self.wpc1 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.wpc2 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.bpc1 = nn.Parameter(torch.tensor(0.),requires_grad=True)

“requires_grad = True” attribute tells us that while doing backpropagation, values change according to loss. However, I placed the weights and biases like we as do it on the example.


class SimpleLSTM(L.LightningModule):
    def __init__(self):

        super().__init__()

        self.wbc1 = 2.7
        self.wbc2 = 2.2
        self.bbc1 = 2.3

        self.wgc1 = 1.1
        self.wgc2 = 0.8
        self.bgc1 = 0.8

        self.wyc1 = 0.4
        self.wyc2 = 1.2
        self.byc1 = 0.9

        self.wgrc1 = 0.3
        self.wgrc2 = 2.9
        self.bgrc1 = 2.1

Cells

I defined input_value, long_memory and short_memory. Then, I connected all cells according to the figure.


def lstm_cells(self, input_value, long_memory, short_memory):

        
        blue_cell = torch.sigmoid((short_memory * self.wbc1) + 
                                              (input_value * self.wbc2) + 
                                              self.bbc1)

        green_cell = torch.sigmoid((short_memory * self.wgc1) +
                                                   (input_value * self.wgc2)+ 
                                                   self.bbc1)

        yellow_cell= torch.tanh((short_memory * self.wyc1) + 
                                      (input_value * self.wyc2) + self.byc1)
        
        updated_long_memory = ((long_memory * blue_cell) + 
                               (green_cell * yellow_cell))

        gray_cell= torch.sigmoid((short_memory * self.wgrc) + 
                                       (input_value * self.wgrc2) + self.bgrc1)
        
        updated_short_memory = torch.tanh(updated_long_memory) * gray_cell

        return ([updated_long_memory,updated_short_memory])

Forward Propagation

I chose the long memory values as 2, short memory as 1.

def forward(self, input):
        long_memory = 2
        short_memory = 1

        value = input[0]

        long_memory, short_memory = self.lstm_cells(value, long_memory, short_memory)

        return short_memory

Prediction

I defined the model and predicted the value.

class SimpleLSTM(L.LightningModule):
    def __init__(self):

        super().__init__()
        self.wlr1 = 2.7
        self.wlr2 = 2.2
        self.blr1 = 2.3

        self.wpr1 = 1.1
        self.wpr2 = 0.8
        self.bpr1 = 0.8

        self.wp1 = 0.4
        self.wp2 = 1.2
        self.bp1 = 0.9

        self.wo1 = 0.3
        self.wo2 = 2.9
        self.bo1 = 2.1

    def lstm_cells(self, input_value, long_memory, short_memory):

        
        blue_cell = torch.sigmoid((short_memory * self.wbc1) + 
                                              (input_value * self.wbc2) + 
                                              self.bbc1)

        green_cell = torch.sigmoid((short_memory * self.wgc1) +
                                                   (input_value * self.wgc2)+ 
                                                   self.bbc1)

        yellow_cell= torch.tanh((short_memory * self.wyc1) + 
                                      (input_value * self.wyc2) + self.byc1)
        
        updated_long_memory = ((long_memory * blue_cell) + 
                               (green_cell * yellow_cell))

        gray_cell= torch.sigmoid((short_memory * self.wgrc) + 
                                       (input_value * self.wgrc2) + self.bgrc1)
        
        updated_short_memory = torch.tanh(updated_long_memory) * gray_cell

        return ([updated_long_memory,updated_short_memory])
    
    def forward(self, input):
        long_memory = 2
        short_memory = 1

        value = input[0]

        long_memory, short_memory = self.lstm_cells(value, long_memory, short_memory)

        return short_memory

input = 1.
model = SimpleLSTM()
model(torch.tensor([input]).detach())

-OUTPUT-

Predict is 
tensor(0.9893)

It is observed that the result is the same as in the example above.



With back propagation

When backpropagation is used, the model looks like that.

  • We defined Adam as an optimizer.

The model keeps updating the weights and biases until it reaches optimum loss.


class SimpleLSTM(L.LightningModule):
    def __init__(self):

        super().__init__()

        mean = torch.tensor(0.0)
        std = torch.tensor(1.0)
        zero = torch.tensor(0.)

        # Blue cell weights and biases
        self.wbc1 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.wbc2 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.bbc1 = nn.Parameter(zero,requires_grad=True)

        # Green cell weights and biases
        self.wgc1 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.wgc2 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.bgc1 = nn.Parameter(zero,requires_grad=True)

        # Yellow cell weights and biases
        self.wyc1 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.wyc2 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.byc1 = nn.Parameter(zero,requires_grad=True)

        # Gray cell weights and biases
        self.wpc1 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.wpc2 = nn.Parameter(torch.normal(mean=mean,std=std),requires_grad=True)
        self.bpc1 = nn.Parameter(zero,requires_grad=True)

    def lstm_cells(self, input_value, long_memory, short_memory):

        
        blue_cell = torch.sigmoid((short_memory * self.wbc1) + 
                                              (input_value * self.wbc2) + 
                                              self.bbc1)

        green_cell = torch.sigmoid((short_memory * self.wgc1) +
                                                   (input_value * self.wgc2)+ 
                                                   self.bbc1)

        yellow_cell= torch.tanh((short_memory * self.wyc1) + 
                                      (input_value * self.wyc2) + self.byc1)
        
        updated_long_memory = ((long_memory * blue_cell) + 
                               (green_cell * yellow_cell))

        gray_cell= torch.sigmoid((short_memory * self.wgrc) + 
                                       (input_value * self.wgrc2) + self.bgrc1)
        
        updated_short_memory = torch.tanh(updated_long_memory) * gray_cell

        return ([updated_long_memory,updated_short_memory])
    
    def forward(self, input):
        long_memory = 0
        short_memory = 0

        value1 = input[0]
        value2 = input[1]
        value3 = input[2]
        value4 = input[3]

        long_memory, short_memory = self.lstm_cells(value1, long_memory, short_memory)
        long_memory, short_memory = self.lstm_cells(value2, long_memory, short_memory)  
        long_memory, short_memory = self.lstm_cells(value3, long_memory, short_memory)
        long_memory, short_memory = self.lstm_cells(value4, long_memory, short_memory)
  
        return short_memory

    def configure_optimizers(self):
        return (Adam(self.parameters()))
    
    def training_step(self, batch, batch_idx):

        input_i, label_i = batch
        output_i = self.forward(input_i[0])
        loss = (output_i - label_i)**2
        self.log("train_loss",loss)

        if (label_i  == 0):
            self.log("out_0",output_i)
        else:
            self.log("out_1",output_i)
        return loss

We talk about LSTM architecture and building this using PyTorch. I hope what I wrote was understandable.

16 views0 comments

Kommentare


bottom of page